Back to Search Start Over

Heat and mass transfer in double-diffusive mixed convection of Casson fluid: biomedical applications.

Authors :
Bathmanaban, P.
Siva, E. P.
Santra, S. S.
Askar, S. S.
Foul, A.
Nandi, S.
Source :
Colloid & Polymer Science. Jul2024, p1-35.
Publication Year :
2024

Abstract

The study investigates the heat and mass transfer of mixed peristaltic Casson fluid flow through a porous medium in the presence of electroosmosis. It uses the lubrication LWL-LRN analytical technique to transform flow-control equations into ordinary differential equations. The equation is simplified using a numerical solver, bvp4c, in MATLAB software. The study analyses the behaviour of momentum, thermal, solutal, and nanoparticle concentration using parameters such as the magnetic field parameter, porous, electroosmotic, Prandtl, thermal Grashof number, and solutal concentration. Comparing this work with the existing investigation reveals a high level of concordance regarding the impact of thermophoresis and Brownian variables on momentum fields. The study’s novelty is the double-diffusive effects of Casson fluid, which provides a more accurate characterisation of its flow behaviour with convective boundary conditions over an inclined surface. Such observations are useful in real-life applications to capture the shear and stress-thinning properties and flow of synovial fluid in joints, as well as to understand blood flow in several physiological conditions.Graphical Abstract: The study investigates the heat and mass transfer of mixed peristaltic Casson fluid flow through a porous medium in the presence of electroosmosis. It uses the lubrication LWL-LRN analytical technique to transform flow-control equations into ordinary differential equations. The equation is simplified using a numerical solver, bvp4c, in MATLAB software. The study analyses the behaviour of momentum, thermal, solutal, and nanoparticle concentration using parameters such as the magnetic field parameter, porous, electroosmotic, Prandtl, thermal Grashof number, and solutal concentration. Comparing this work with the existing investigation reveals a high level of concordance regarding the impact of thermophoresis and Brownian variables on momentum fields. The study’s novelty is the double-diffusive effects of Casson fluid, which provides a more accurate characterisation of its flow behaviour with convective boundary conditions over an inclined surface. Such observations are useful in real-life applications to capture the shear and stress-thinning properties and flow of synovial fluid in joints, as well as to understand blood flow in several physiological conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0303402X
Database :
Academic Search Index
Journal :
Colloid & Polymer Science
Publication Type :
Academic Journal
Accession number :
178552623
Full Text :
https://doi.org/10.1007/s00396-024-05286-3