Back to Search
Start Over
Analysis of energy consumption efficiency and emissions according to urban driving of hybrid electric vehicles in Korea.
- Source :
-
Applied Energy . Oct2024, Vol. 371, pN.PAG-N.PAG. 1p. - Publication Year :
- 2024
-
Abstract
- Internal combustion engines contribute significantly to global warming and air pollution in urban areas with high population densities and abundant vehicular movement. Alternative energy vehicle, such as hybrid and electric vehicles, are being developed to address these concerns. However, a gradual transition to electrification while maintaining the existing fuel infrastructure appears more feasible than the rapid proliferation of battery-powered electric vehicles. Hybrid electric vehicles are recognized as an important means of improving vehicle fuel efficiency and reducing carbon emissions by introducing changes in driving modes to enhance energy consumption efficiency. Catalyst activation does not occur in cold starts, making it challenging to control exhaust emissions. In Korea, urban driving patterns characterized by speeds below 60 km/h often results in insufficient catalyst activation. Therefore, research on the characteristics of urban driving and cold-start conditions is essential. This study analyzed the urban driving characteristics of domestic hybrid vehicles reflecting urban conditions through chassis tests and examined the variations in the external temperature and engine contribution to assess the control capability of the hybrid system. Confirming that minimizing the engine preheating time during cold starts and efficiently utilizing energy stored in the motor can enhance fuel efficiency and reduce exhaust emission rates. • Fuel consumption and exhaust emissions are predominantly generated during vehicle operation. • Hybrid electirc vehicles have the best fuel efficiency. • The hybrid system is controlled and operated by the state of charge. • Enhancing both fuel efficiency and emission control is achieved through hybrid systems. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03062619
- Volume :
- 371
- Database :
- Academic Search Index
- Journal :
- Applied Energy
- Publication Type :
- Academic Journal
- Accession number :
- 178682136
- Full Text :
- https://doi.org/10.1016/j.apenergy.2024.123686