Back to Search
Start Over
A nonlinear analysis of electrically forced vibrations of piezoelectric plates with viscous damping near the thickness-shear mode.
- Source :
-
Applied Mathematical Modelling . Oct2024, Vol. 134, p97-107. 11p. - Publication Year :
- 2024
-
Abstract
- Based on the theory of nonlinear piezoelectricity, an approximate solution for electrically forced nonlinear thickness-shear vibrations of piezoelectric plates is introduced. The model considers an infinite piezoelectric plate subjected to an alternative voltage, incorporating 3rd-order and 4th-order elastic constants and viscous damping under finite deformation. The system's differential equations for steady-state forced vibrations are derived from the nonlinear pure thickness-shear vibration problem, and transformed so that the new electrical boundary conditions are free. After the application of Galerkin's method, the transformed differential equations lead to a cubic equation, capturing the nonlinear current-frequency curves of AT-cut quartz plates without the need of the quality factor Q, due to the introduced viscous damping. When the damping effect is ignored, the frequency response curves of the AT-cut quartz plate under a specific voltage are confirmed with the existing literature. The study emphasizes the presence of the critical voltage and the importance of the fourth-order elastic constant (c 6666) in the stability, revealing lower c 6666 values correspond to improved stability. Additionally, a proposed algorithm efficiently determines critical voltages for resonator stability. • A cubic equation predicts the nonlinear behavior of piezoelectric resonators. • The decrease of c 6666 improves the stability of piezoelectric resonators. • The amplitude-frequency curve has a hysteresis region when voltage is that high. • An efficient algorithm for the critical voltage is suggested. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0307904X
- Volume :
- 134
- Database :
- Academic Search Index
- Journal :
- Applied Mathematical Modelling
- Publication Type :
- Academic Journal
- Accession number :
- 178682187
- Full Text :
- https://doi.org/10.1016/j.apm.2024.05.039