Back to Search
Start Over
Simulation of a Continuous Pyrolysis Reactor for a Heat Self-Sufficient Process and Liquid Fuel Production.
- Source :
-
Energies (19961073) . Jul2024, Vol. 17 Issue 14, p3526. 24p. - Publication Year :
- 2024
-
Abstract
- This study investigates the potential of utilizing pyrolysis byproducts, including char and non-condensable gases, as an energy source to promote autothermal pyrolysis. A total of six pyrolysis experiments were conducted at three distinct cracking temperatures, namely, 450 °C, 500 °C, and 550 °C. The experiments utilized two types of biomasses, i.e., 100% pine chips and 75% pine chips mixed with 25% refuse-derived fuels (RDF). The findings from the experiments were subsequently incorporated into a process simulation conducted on Aspen Plus for an energy balance and a techno-economic analysis. The results of the experiments revealed that the energy produced by the byproducts utilizing only pine chips is 1.453 kW/kg, which is enough to fulfill the energy demand of the pyrolysis reactor (1.298 kW/kg). However, when 25% of RDF is added, the energy demand of the reactor decreases to 1.220 kW/kg, and the produced energy increases to 1.750 kW/kg. Furthermore, adding RDF increases bio-oil's lower heating value (LHV). The techno-economic study proposed three scenarios: optimistic, conservative, and tragic. The optimistic has a payback period (PBP) of 7.5 years and a positive net present value (NPV). However, the other two scenarios were unfavorable, resulting in unfeasibility. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 17
- Issue :
- 14
- Database :
- Academic Search Index
- Journal :
- Energies (19961073)
- Publication Type :
- Academic Journal
- Accession number :
- 178696490
- Full Text :
- https://doi.org/10.3390/en17143526