Back to Search Start Over

Investigating the Dewatering Efficiency of Sewage Sludge with Optimized Ratios of Electrolytic Manganese Residue Components.

Authors :
Huang, Xuquan
Wang, Jun
Xue, Fei
Zhao, Xiaorong
Shi, Ziyao
Liang, Qingyang
Wang, Haojie
Zhao, Ziyu
Source :
Materials (1996-1944). Jul2024, Vol. 17 Issue 14, p3605. 14p.
Publication Year :
2024

Abstract

As an industrial waste residue, Electrolytic Manganese Residue (EMR) can greatly promote sludge dewatering and further particle-size optimization can significantly strengthen sludge dewaterability. In this study, the effects of ammonium sulfate, calcium sulphate dihydrate, and manganese carbonate in EMR on sludge dewatering performance were investigated using the response surface optimization method. It was found that the optimized ratio of three components in EMR was 1.0:1.6:2.2 based on capillary suction time (CST), specific resistance of filtration (SRF), and zeta potential of dewatered sludge. The composition ratio of particle-size optimized EMR was modified based on the above optimization, resulting in a significant increase in sludge dewatering performance (CST and SRF reduced by 8.7% and 11.2%, respectively). Compared with those in original sludge, the content of bound extracellular polymeric substances in the conditioned sludge with optimized ratio was drastically reduced while that of soluble extracellular polymeric substances was slightly increased, which was in accordance with the decline of fluorescence intensity. These findings indicated the disintegration of extracellular polymeric substances, the enhancement of hydrophobicity, and dewatering properties of the sludge. In summary, optimized EMR can effectively intensify the dewaterability of sludge, providing a competitive solution for dewatering and further disposal of sludge. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
14
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
178697109
Full Text :
https://doi.org/10.3390/ma17143605