Back to Search Start Over

The Role of Glia in Wilson's Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives.

Authors :
Gromadzka, Grażyna
Wilkaniec, Anna
Tarnacka, Beata
Hadrian, Krzysztof
Bendykowska, Maria
Przybyłkowski, Adam
Litwin, Tomasz
Source :
International Journal of Molecular Sciences. Jul2024, Vol. 25 Issue 14, p7545. 23p.
Publication Year :
2024

Abstract

Wilson's disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood–brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson's disease and Alzheimer's disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
14
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
178700449
Full Text :
https://doi.org/10.3390/ijms25147545