Back to Search Start Over

Discovery and characterization of a novel LysinB from F2 sub-cluster mycobacteriophage RitSun.

Authors :
Arora, Ritu
Nadar, Kanika
Bajpai, Urmi
Source :
Scientific Reports. 8/5/2024, Vol. 14 Issue 1, p1-11. 11p.
Publication Year :
2024

Abstract

The escalating antibiotic resistance in mycobacterial species poses a significant threat globally, necessitating an urgent need to find alternative solutions. Bacteriophage-derived endolysins, which facilitate phage progeny release by attacking bacterial cell walls, present promising antibacterial candidates due to their rapid lytic action, high specificity and low risk of resistance development. In mycobacteria, owing to the complex, hydrophobic cell wall, mycobacteriophages usually synthesize two endolysins: LysinA, which hydrolyzes peptidoglycan; LysinB, which delinks mycolic acid-containing outer membrane and arabinogalactan, releasing free mycolic acid. In this study, we conducted domain analysis and functional characterization of a novel LysinB from RitSun, an F2 sub-cluster mycobacteriophage from our phage collection. Several key properties of RitSun LysinB make it an important antimycobacterial agent: its ability to lyse Mycobacterium smegmatis from without, a higher than previously reported specific activity of 1.36 U/mg and its inhibitory effect on biofilm formation. Given the impermeable nature of the mycobacterial cell envelope, dissecting RitSun LysinB at the molecular level to identify its cell wall-destabilizing sequence could be utilized to engineer other native lysins as fusion proteins, broadening their activity spectrum. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
178837305
Full Text :
https://doi.org/10.1038/s41598-024-68636-9