Back to Search Start Over

Exosomal miR-486 derived from bone marrow mesenchymal stem cells promotes angiogenesis following cerebral ischemic injury by regulating the PTEN/Akt pathway.

Authors :
Bao, Hangyang
Mao, Shihui
Hu, Xiaowei
Li, Lin
Tao, Hongmiao
Zhou, Jie
Xu, Lanxi
Fang, Yan
Zhang, Yani
Chu, Lisheng
Source :
Scientific Reports. 8/5/2024, Vol. 14 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been shown to promote angiogenesis after ischemic stroke, in which microRNAs (miRs) are believed to play an important role in exosome-mediated therapeutic effects, though the mechanism is still not clear. In this study, a series of molecular biological and cellular assays, both in vitro and in vivo, were performed to elucidate the role of exosomal miR-486 in angiogenesis following cerebral ischemic and its molecular mechanisms. Our results revealed that BMSC-Exos significantly improved neurological function and increased microvessel density in ischemic stroke rats. In vitro assays showed that BMSC-Exos promoted the proliferation, migration, and tube formation ability of oxygen–glucose deprivation/reoxygenation (OGD/R) injured rat brain microvascular endothelial cells (RBMECs). Importantly, BMSC-Exos increased the expression of miR-486 and phosphorylated protein kinase B (p-Akt) and down-regulated the protein level of phosphatase and tensin homolog (PTEN) in vivo and in vitro. Mechanistic studies demonstrated that transfection with miR-486 mimic enhanced RBMECs angiogenesis and increased p-Akt expression, while inhibited PTEN expression. On the other hand, the miR-486 inhibitor induced an opposite effect, which could be blocked by PTEN siRNA. It was thus concluded that exosomal miR-486 from BMSCs may enhance the functional recovery by promoting angiogenesis following cerebral ischemic injury, which might be related to its regulation of the PTEN/Akt pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
178837353
Full Text :
https://doi.org/10.1038/s41598-024-69172-2