Back to Search
Start Over
The Incorporation of Sulfonated PAF Enhances the Proton Conductivity of Nafion Membranes at High Temperatures.
- Source :
-
Polymers (20734360) . Aug2024, Vol. 16 Issue 15, p2208. 11p. - Publication Year :
- 2024
-
Abstract
- Nafion membranes are widely used as proton exchange membranes, but their proton conductivity deteriorates in high-temperature environments due to the loss of water molecules. To address this challenge, we propose the utilization of porous aromatic frameworks (PAFs) as a potential solution. PAFs exhibit remarkable characteristics, such as a high specific surface area and porosity, and their porous channels can be post-synthesized. Here, a novel approach was employed to synthesize a PAF material, designated as PAF-45D, which exhibits a specific surface area of 1571.9 m2·g−1 and possesses the added benefits of facile synthesis and a low cost. Subsequently, sulfonation treatment was applied to PAF-45D in order to introduce sulfonic acid groups into its pores, resulting in the formation of PAF-45DS. The successful incorporation of sulfonic groups was confirmed through TG, IR, and EDS analyses. Furthermore, a novel Nafion composite membrane was prepared by incorporating PAF-45DS. The Nyquist plot of the composite membranes demonstrates that the sulfonated PAF-45DS material can enhance the proton conductivity of Nafion membranes at high temperatures. Specifically, under identical film formation conditions, doping with a 4% mass fraction of PAF-45DS, the conductivity of the Nafion composite membrane increased remarkably from 2.25 × 10−3 S·cm−1 to 5.67 × 10−3 S·cm−1, nearly 2.5 times higher. Such promising and cost-effective materials could be envisioned for application in the field of Nafion composite membranes. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734360
- Volume :
- 16
- Issue :
- 15
- Database :
- Academic Search Index
- Journal :
- Polymers (20734360)
- Publication Type :
- Academic Journal
- Accession number :
- 178952907
- Full Text :
- https://doi.org/10.3390/polym16152208