Back to Search Start Over

Rethinking Open-World DeepFake Attribution with Multi-perspective Sensory Learning.

Authors :
Sun, Zhimin
Chen, Shen
Yao, Taiping
Yi, Ran
Ding, Shouhong
Ma, Lizhuang
Source :
International Journal of Computer Vision. Aug2024, p1-24.
Publication Year :
2024

Abstract

The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or diffusion models are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces remain under-explored. To push the related frontier research, we introduce a novel task named Open-World DeepFake Attribution, and the corresponding benchmark OW-DFA++, which aims to evaluate attribution performance against various types of fake faces in open-world scenarios. Meanwhile, we propose a Multi-Perspective Sensory Learning (MPSL) framework that aims to address the challenge of OW-DFA++. Since different forged faces have different tampering regions and frequency artifacts, we introduce the Multi-Perception Voting (MPV) module, which aligns inter-sample features based on global, multi-scale local, and frequency relations. The MPV module effectively filters and groups together samples belonging to the same attack type. Pseudo-labeling is another common and effective strategy in semi-supervised learning tasks, and we propose the Confidence-Adaptive Pseudo-labeling (CAP) module, using soft pseudo-labeling to enhance the class compactness and mitigate pseudo-noise induced by similar novel attack methods. The CAP module imposes strong constraints and adaptively filters samples with high uncertainty to improve the accuracy of the pseudo-labeling. In addition, we extend the MPSL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments and visualizations verify the superiority of our proposed method on the OW-DFA++ and demonstrate the interpretability of the deepfake attribution task and its impact on improving the security of the deepfake detection area. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09205691
Database :
Academic Search Index
Journal :
International Journal of Computer Vision
Publication Type :
Academic Journal
Accession number :
178965966
Full Text :
https://doi.org/10.1007/s11263-024-02184-7