Back to Search
Start Over
A two-weight boundedness criterion and its applications.
- Source :
-
Analysis & Applications . Nov2024, Vol. 22 Issue 8, p1303-1352. 50p. - Publication Year :
- 2024
-
Abstract
- In this paper, the authors establish a general (two-weight) boundedness criterion for a pair of functions, (F , f) , on ℝ n in the scale of weighted Lebesgue spaces, weighted Lorentz spaces, (Lorentz–)Morrey spaces, and variable Lebesgue spaces. As applications, the authors give a unified approach to prove the (two-weight) boundedness of Calderón–Zygmund operators, Littlewood–Paley g -functions, Lusin area functions, Littlewood–Paley g λ ∗ -functions, and fractional integral operators, in the aforementioned function spaces. Moreover, via applying the above (two-weight) boundedness criterion, the authors further obtain the (two-weight) boundedness of Riesz transforms, Littlewood–Paley g -functions, and fractional integral operators associated with second-order divergence elliptic operators with complex bounded measurable coefficients on ℝ n in the aforementioned function spaces. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02195305
- Volume :
- 22
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- Analysis & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 178977610
- Full Text :
- https://doi.org/10.1142/S0219530524500180