Back to Search Start Over

Overexpression of protection of telomeres 1 (POT1), a single-stranded DNA-binding proteins in alfalfa (Medicago sativa), enhances seed vigor.

Authors :
Sun, Shoujiang
Ma, Wen
Mao, Peisheng
Source :
International Journal of Biological Macromolecules. Oct2024:Part 3, Vol. 277, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Extensive bodies of research are dedicated to the study of seed aging with a particular focus on the roles of reactive oxygen species (ROS), and the ensuing oxidative damage during storage, as a primary cause of seed vigor decreasing. ROS diffuse to the nucleus and damage the telomeres, resulting in a loss of genetic integrity. Protection of telomeres 1 (POT1) is a telomeric protein that binds to the telomere region, and plays an essential role in maintaining genomic stability in plants. In this study, there were totally four MsPOT1 genes obtained from alfalfa genome. Expression analysis of four MsPOT1 genes in germinated seed presented the different expressions. Four MsPOT1 genes displayed high expression levels at the early stage of seed germination, Among the four POT1 genes, it was found that MS. gene040108 was significantly up-regulated in the early germination stage of CK seeds, but down-regulated in aged seeds. RT-qPCR assays and RNA-seq data revealed that MsPOT1-X gene was significantly induced by seed aging treatment. Transgenic seeds overexpressing MsPOT1-X gene in Arabidopsis thaliana and Medicago trunctula exhibited enhanced seed vigor, telomere length, telomerase activity associated with reduced H 2 O 2 content. These results would provide a new way to understand aging stress-responsive MsPOT1 genes for genetic improvement of seed vigor. Although a key gene regulating seed vigor was identified in this study, the specific mechanism of MsPOT1-X gene regulating seed vigor needs to be further explored. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
277
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
179060564
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.134300