Back to Search Start Over

Interfacial Ir‐V Direct Metal Bonding Enhanced Hydrogen Evolution Activity in Vanadium Oxides Supported Catalysts.

Authors :
Zheng, Yijuan
Geng, Wei
Xiao, Sutong
Ma, Tian
Cheng, Chong
Liao, Yaozu
Zeng, Zhiyuan
Li, Shuang
Zhao, Changsheng
Source :
Angewandte Chemie. 8/26/2024, Vol. 136 Issue 35, p1-9. 9p.
Publication Year :
2024

Abstract

Tuning the interfacial structure of metal oxide substrates is an essential strategy to induce electronic structure reconstruction of supported catalysts, which is of great importance in optimizing their catalytic activities. Herein, vanadium oxides‐supported Ir catalysts (Ir‐V2O3, Ir‐VO2, and Ir‐V2O5) with different interfacial bonding environments (Ir‐V, Ir‐Obri, and Ir‐O, respectively) were investigated for hydrogen evolution reaction (HER). The regulating mechanism of the influence of different interfacial bonding environments on HER activity was investigated by both experimental results and computational evidence. Benefiting from the unique advantages of interfacial Ir‐V direct metal bonds in Ir‐V2O3, including enhanced electron transfer and electron donation ability, an optimized HER performance can be obtained with lowest overpotentials of 16 and 26 mV at 10 mA cm−2, high mass activities of 11.24 and 6.66 A mg−1, and turnover frequency values of 11.20 and 6.63 s−1, in acidic and alkaline conditions respectively. Furthermore, the assembled Ir‐V2O3||RuO2 anion exchange membrane (AEM) electrolyzer requires only 1.92 V to achieve a high current density of 500 mA cm−2 and realizes long‐term stability. This study provides essential insights into the regulating mechanism of interfacial chemical bonding in electrocatalysts and offers a new pathway to design noble metal catalysts for different applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
136
Issue :
35
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
179090842
Full Text :
https://doi.org/10.1002/ange.202406427