Back to Search Start Over

A Hermitian refinement of symplectic Clifford analysis.

Authors :
Eelbode, David
Muarem, Guner
Source :
Mathematical Methods in the Applied Sciences. 9/30/2024, Vol. 47 Issue 14, p11473-11489. 17p.
Publication Year :
2024

Abstract

In this paper, we develop the Hermitian refinement of symplectic Clifford analysis, by introducing a complex structure 핁 on the canonical symplectic manifold (ℝ2n,ω0)$$ \left({\mathrm{\mathbb{R}}}^{2n},{\omega}_0\right) $$. This gives rise to two symplectic Dirac operators Ds$$ {D}_s $$ and Dt$$ {D}_t $$ (in the sense of Habermann), leading to a u(n)$$ \mathfrak{u}(n) $$‐invariant system of equations on ℝ2n$$ {\mathrm{\mathbb{R}}}^{2n} $$. We discuss the solution space for this system, culminating in a Fischer decomposition for the space of (harmonic) polynomials on ℝ2n$$ {\mathrm{\mathbb{R}}}^{2n} $$ with values in the symplectic spinors. To make this decomposition explicit, we will construct the associated embedding factors using a transvector algebra. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01704214
Volume :
47
Issue :
14
Database :
Academic Search Index
Journal :
Mathematical Methods in the Applied Sciences
Publication Type :
Academic Journal
Accession number :
179110425
Full Text :
https://doi.org/10.1002/mma.10138