Back to Search
Start Over
A Hermitian refinement of symplectic Clifford analysis.
- Source :
-
Mathematical Methods in the Applied Sciences . 9/30/2024, Vol. 47 Issue 14, p11473-11489. 17p. - Publication Year :
- 2024
-
Abstract
- In this paper, we develop the Hermitian refinement of symplectic Clifford analysis, by introducing a complex structure 핁 on the canonical symplectic manifold (ℝ2n,ω0)$$ \left({\mathrm{\mathbb{R}}}^{2n},{\omega}_0\right) $$. This gives rise to two symplectic Dirac operators Ds$$ {D}_s $$ and Dt$$ {D}_t $$ (in the sense of Habermann), leading to a u(n)$$ \mathfrak{u}(n) $$‐invariant system of equations on ℝ2n$$ {\mathrm{\mathbb{R}}}^{2n} $$. We discuss the solution space for this system, culminating in a Fischer decomposition for the space of (harmonic) polynomials on ℝ2n$$ {\mathrm{\mathbb{R}}}^{2n} $$ with values in the symplectic spinors. To make this decomposition explicit, we will construct the associated embedding factors using a transvector algebra. [ABSTRACT FROM AUTHOR]
- Subjects :
- *DIRAC operators
*SYMPLECTIC manifolds
*SPINORS
*ALGEBRA
*POLYNOMIALS
Subjects
Details
- Language :
- English
- ISSN :
- 01704214
- Volume :
- 47
- Issue :
- 14
- Database :
- Academic Search Index
- Journal :
- Mathematical Methods in the Applied Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 179110425
- Full Text :
- https://doi.org/10.1002/mma.10138