Back to Search Start Over

Security-aware energy-efficient design for mobile edge computing network operating with finite blocklength codes.

Authors :
Shi, Chenhao
Hu, Yulin
Zhu, Yao
Schmeink, Anke
Source :
EURASIP Journal on Wireless Communications & Networking. 9/3/2024, Vol. 2024 Issue 1, p1-26. 26p.
Publication Year :
2024

Abstract

Energy efficiency and physical-layer security are crucial considerations in the advancement of mobile edge computing systems. This paper addresses the trade-off between secure-reliability and energy consumption in finite blocklength (FBL) communications. Specifically, we examine a three-node scenario involving a user, a legitimate edge computing server, and an eavesdropper, where the user offloads sensitive data to the edge server while facing potential eavesdropping threats. We propose an optimization framework aimed at minimizing energy consumption while ensuring secure-reliability by decomposing the problem into manageable subproblems. By demonstrating the convexity of the objective function concerning the variables, we establish the existence of an optimal parameter selection for the problem. This implies that practical optimization of parameters can significantly enhance system performance. Our numerical results demonstrate that the application of FBL regime and retransmission mechanism can effectively reduce the energy consumption of the system while ensuring secure-reliability. For the quantitative analyses, the retransmission mechanism is 33.1% better than no retransmission, and the FBL regime is 13.1% better than infinite blocklength (IBL) coding. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16871472
Volume :
2024
Issue :
1
Database :
Academic Search Index
Journal :
EURASIP Journal on Wireless Communications & Networking
Publication Type :
Academic Journal
Accession number :
179413447
Full Text :
https://doi.org/10.1186/s13638-024-02395-z