Back to Search Start Over

Renewable synthesis of MoO3 nanosheets via low temperature phase transition for supercapacitor application.

Authors :
Amba Sankar, K. N.
Kesavan, Lokesh
Saha, Bikash
Jyolsnaraj, M. K.
Mohan, S.
Nandakumar, P.
Mohanta, Kallol
Kvarnström, Carita
Source :
Scientific Reports. 9/3/2024, Vol. 14 Issue 1, p1-20. 20p.
Publication Year :
2024

Abstract

2D transition metal oxides have created revolution in the field of supercapacitors due to their fabulous electrochemical performance and stability. Molybdenum trioxides (MoO3) are one of the most prominent solid-state materials employed in energy storage applications. In this present work, we report a non-laborious physical vapor deposition (PVD) and ultrasonic extraction (USE) followed by vacuum assisted solvothermal treatment (VST) route (DEST), to produce 2D MoO3 nanosheets, without any complex equipment requirements. Phase transition in MoO3 is often achieved at very high temperatures by other reported works. But our well-thought-out, robust approach led to a phase transition from one phase to another phase, for e.g., hexagonal (h-MoO3) to orthorhombic (α-MoO3) structure at very low temperature (90 °C), using a green solvent (H2O) and renewable energy. This was achieved by implementing the concept of oxygen vacancy defects and solvolysis. The synthesized 2D nanomaterials were investigated for electrochemical performance as supercapacitor electrode materials. The α-MoO3 electrode material has shown supreme capacitance (256 Fg−1) than its counterpart h-MoO3 and mixed phases (h and α) of MoO3 (< 50 Fg−1). Thus, this work opens up a new possibility to synthesize electrocapacitive 2D MoO3 nanosheets in an eco-friendly and energy efficient way; hence can contribute in renewable circular economy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
179413950
Full Text :
https://doi.org/10.1038/s41598-024-69765-x