Back to Search Start Over

Amplification of acoustic orbital angular momentum from non-absorbent impellers.

Authors :
Liu, Lianyun
Chu, Zhigang
Source :
Journal of Applied Physics. 9/7/2024, Vol. 136 Issue 9, p1-11. 11p.
Publication Year :
2024

Abstract

Zeldovich amplification of classic waves carrying orbital angular momentum (OAM) from a rotating absorber is an extension of Penrose superradiance from a rotating black hole. The demonstration of Zeldovich amplification in recently published experiments showed the possibility of extracting energy from a spinning black hole or a rotating absorber. However, it remains unclear whether extracting energy from non-absorbent bodies is possible. Here, we experimentally demonstrate the amplification of acoustic OAM from rotating impellers made of non-absorbent materials. We develop a multichannel least-mean-square algorithm to emit high-charge acoustic OAM beams into three types of impellers. The acoustic gains (more than 20 dB) have been measured by both a static microphone and a microphone array working as a virtual rotating receiver. The results indicate that the acoustic gain from the impeller with a large windward area is much higher than the ones with a small area. Our work is worthwhile in proposing the experimental method to study the phenomenon of acoustic OAM amplification and showing prospects in industrial applications such as amplifying acoustic signals by commonly used impellers. Our work also discusses a possible way of extracting energy from non-absorbent celestial systems, such as the orbiting planets of the Solar system, which are much less absorbent to light but much closer to the Earth than a black hole. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
136
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
179513235
Full Text :
https://doi.org/10.1063/5.0218404