Back to Search Start Over

Staphylococcus aureus Stress Response to Bicarbonate Depletion.

Authors :
Liberini, Elisa
Fan, Sook-Ha
Bayer, Arnold S.
Beck, Christian
Biboy, Jacob
François, Patrice
Gray, Joe
Hipp, Katharina
Koch, Iris
Peschel, Andreas
Sailer, Brigitte
Vollmer, Daniela
Vollmer, Waldemar
Götz, Friedrich
Source :
International Journal of Molecular Sciences. Sep2024, Vol. 25 Issue 17, p9251. 16p.
Publication Year :
2024

Abstract

Bicarbonate and CO2 are essential substrates for carboxylation reactions in bacterial central metabolism. In Staphylococcus aureus, the bicarbonate transporter, MpsABC (membrane potential-generating system) is the only carbon concentrating system. An mpsABC deletion mutant can hardly grow in ambient air. In this study, we investigated the changes that occur in S. aureus when it suffers from CO2/bicarbonate deficiency. Electron microscopy revealed that ΔmpsABC has a twofold thicker cell wall thickness compared to the parent strain. The mutant was also substantially inert to cell lysis induced by lysostaphin and the non-ionic surfactant Triton X-100. Mass spectrometry analysis of muropeptides revealed the incorporation of alanine into the pentaglycine interpeptide bridge, which explains the mutant's lysostaphin resistance. Flow cytometry analysis of wall teichoic acid (WTA) glycosylation patterns revealed a significantly lower α-glycosylated and higher ß-glycosylated WTA, explaining the mutant's increased resistance towards Triton X-100. Comparative transcriptome analysis showed altered gene expression profiles. Autolysin-encoding genes such as sceD, a lytic transglycosylase encoding gene, were upregulated, like in vancomycin-intermediate S. aureus mutants (VISA). Genes related to cell wall-anchored proteins, secreted proteins, transporters, and toxins were downregulated. Overall, we demonstrate that bicarbonate deficiency is a stress response that causes changes in cell wall composition and global gene expression resulting in increased resilience to cell wall lytic enzymes and detergents. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
17
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
179644328
Full Text :
https://doi.org/10.3390/ijms25179251