Back to Search
Start Over
Three Decades of Inundation Dynamics in an Australian Dryland Wetland: An Eco-Hydrological Perspective.
- Source :
-
Remote Sensing . Sep2024, Vol. 16 Issue 17, p3310. 21p. - Publication Year :
- 2024
-
Abstract
- Wetland ecosystems are experiencing rapid degradation due to human activities, particularly the diversion of natural flows for various purposes, leading to significant alterations in wetland hydrology and their ecological functions. However, understanding and quantifying these eco-hydrological changes, especially concerning inundation dynamics, presents a formidable challenge due to the lack of long-term, observation-based spatiotemporal inundation information. In this study, we classified wetland areas into ten equal-interval classes based on inundation probability derived from a dense, 30-year time series of Landsat-based inundation maps over an Australian dryland riparian wetland, Macquarie Marshes. These maps were then compared with three simplified vegetation patches in the area: river red gum forest, river red gum woodland, and shrubland. Our findings reveal a higher inundation probability over a small area covered by river red gum forest, exhibiting persistent inundation over time. In contrast, river red gum woodland and shrubland areas show fluctuating inundation patterns. When comparing percentage inundation with the Normalized Difference Vegetation Index (NDVI), we observed a notable agreement in peaks, with a lag time in NDVI response. A strong correlation between NDVI and the percentage of inundated area was found in the river red gum woodland patch. During dry, wet, and intermediate years, the shrubland patch consistently demonstrated similar inundation probabilities, while river red gum patches exhibited variable probabilities. During drying events, the shrubland patch dried faster, likely due to higher evaporation rates driven by exposure to solar radiation. However, long-term inundation probability exhibited agreement with the SAGA wetness index, highlighting the influence of topography on inundation probability. These findings provide crucial insights into the complex interactions between hydrological processes and vegetation dynamics in wetland ecosystems, underscoring the need for comprehensive monitoring and management strategies to mitigate degradation and preserve these vital ecosystems. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 17
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 179650819
- Full Text :
- https://doi.org/10.3390/rs16173310