Back to Search Start Over

Electroencephalography Emotion Recognition Based on Rhythm Information Entropy Extraction.

Authors :
Liu, Zhen-Tao
Xu, Xin
She, Jinhua
Yang, Zhaohui
Chen, Dan
Source :
Journal of Advanced Computational Intelligence & Intelligent Informatics. Sep2024, Vol. 28 Issue 5, p1095-1106. 12p.
Publication Year :
2024

Abstract

Electroencephalography (EEG) is a physiological signal directly generated by the central nervous system. Brain rhythm is closely related to a person's emotional state and is widely used for EEG emotion recognition. In previous studies, the rhythm specificity between different brain channels was seldom explored. In this paper, the rhythm specificity of brain channels is studied to improve the accuracy of EEG emotion recognition. Variational mode decomposition is used to decompose rhythm signals and enhance features, and two kinds of information entropy, i.e., differential entropy (DE) and dispersion entropy (DispEn) are extracted. The rhythm being used to get the best result of single channel emotion recognition is selected as the representative rhythm, and the remove one method is employed to obtain rhythm information entropy feature. In the experiment, the DEAP database was used for EEG emotion recognition in valence-arousal space. The results showed that the best result of rhythm DE feature classification in the valence dimension is 77.04%, and the best result of rhythm DispEn feature classification in the arousal dimension is 79.25%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13430130
Volume :
28
Issue :
5
Database :
Academic Search Index
Journal :
Journal of Advanced Computational Intelligence & Intelligent Informatics
Publication Type :
Academic Journal
Accession number :
179735255
Full Text :
https://doi.org/10.20965/jaciii.2024.p1095