Back to Search Start Over

Lattice points on polyominoes of inversion sequences.

Authors :
Herrera, José L.
Mansour, Toufik
Ramírez, J.L.
Source :
QM - Quaestiones Mathematicae. Oct2024, p1-17. 17p.
Publication Year :
2024

Abstract

AbstractInversion sequences of length <italic>n</italic> are positive integer sequences <italic>e</italic>1 <italic>e</italic>2 …<italic>e</italic><italic>n</italic> such that 1 ≤ <italic>ei</italic> ≤ <italic>i</italic> for all 1 ≤ <italic>i</italic> ≤ <italic>n</italic>. These sequences are in bijection with the permutations of [<italic>n</italic>]. This paper focuses on the polyomino or barpgraph representation of the inversion sequences. More precisely, we study the distribution of lattice points on these polyominoes. We find the generating functions respect to the length, the number of interior vertices, corners, and vertices of a given degree. We also give simple explicit formulas for the total values of these parameters over all polyominoes of inversion sequences of length <italic>n</italic>. Throughout this work, we use symbolic computer algebra to facilitate the computations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16073606
Database :
Academic Search Index
Journal :
QM - Quaestiones Mathematicae
Publication Type :
Academic Journal
Accession number :
179992924
Full Text :
https://doi.org/10.2989/16073606.2024.2402414