Back to Search Start Over

Remnants and fragments of the subducted paleo-Pacific plate: Constraints from geochemistry and geophysics.

Authors :
Xu, Xisheng
Huang, Zhouchuan
Jiang, Dingsheng
Zeng, Gang
Dai, Li-Qun
Source :
SCIENCE CHINA Earth Sciences. Oct2024, Vol. 67 Issue 10, p3041-3061. 21p.
Publication Year :
2024

Abstract

The subduction and rollback of the paleo-Pacific plate during Mesozoic time was the key engine for the evolution of the continental margin in eastern China. It led to lateral accretion of continental crust in Northeast China, lithospheric destruction beneath the North China Craton, and the generation of huge volumes of felsic magmatic rocks in South China. This had a profound influence on deep material cycles and the evolution of epigenetic environmental systems along the continental margin of East Asia. To fully understand the transformation of the dynamic mechanism during the subduction and rollback of the paleo-Pacific plate, we have attempted to trace the remnants and fragments of the subducted paleo-Pacific plate at great depths. Such remnants in both temporal and spatial dimensions can be tracked by using geochemical and geophysical approaches. Studies of the trace elements, Mg-Zn isotopes and Os-Nd-Hf-Pb-O isotopes in continental basalts from eastern China reveal a significant number of the remnants of subduction of the paleo-Pacific plate, and the initial subduction can be traced back to the Early Jurassic. Large-scale geophysical imaging unveils a multitude of high-velocity anomalies in the lower mantle of East Asia. Notably, many high-velocity bodies, aptly referred to as "slab graveyards", are nestled at the base of the lower mantle. Numerous isolated high-velocity anomalies are also present in the upper part of the lower mantle, creating conduits for the descent of the subducted slabs into the lower mantle. However, a resolution of the remnants for the subducted slabs within the lower mantle are quite low. Consequently, their impact on the lower mantle's dynamics is yet to be thoroughly investigated. Finally, the presently observed big mantle wedge (BMW) in East Asia has developed through subduction of the Pacific plate in the Cenozoic. However, following the rollback of the paleo-Pacific plate (began at ∼145 Ma), a Cretaceous BMW system would also form above the mantle transition zone in East Asia. There are significant differences in tectonic-magmatic processes and basin-forming and hydrocarbon-accumulation processes among different regions along the East Asian continental margin. Such differences may be controlled by variations in the speed and angle of rollback of the paleo-Pacific plate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16747313
Volume :
67
Issue :
10
Database :
Academic Search Index
Journal :
SCIENCE CHINA Earth Sciences
Publication Type :
Academic Journal
Accession number :
180036697
Full Text :
https://doi.org/10.1007/s11430-024-1352-y