Back to Search Start Over

RAD21 promotes oncogenesis and lethal progression of prostate cancer.

Authors :
Xiaofeng A. Su
Stopsack, Konrad H.
Schmidt, Daniel R.
Duanduan Ma
Zhe Li
Scheet, Paul A.
Penney, Kathryn L.
Lotan, Tamara L.
Abida, Wassim
DeArment, Elise G.
Lu, Kate
Janas, Thomas
Hu, Sofia
Vander Heiden, Matthew G.
Loda, Massimo
Boselli, Monica
Amon, Angelika
Mucci, Lorelei A.
Source :
Proceedings of the National Academy of Sciences of the United States of America. 9/3/2024, Vol. 121 Issue 36, p1-11. 24p.
Publication Year :
2024

Abstract

Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, RAD21, with an odds ratio of 3.7 (95% CI 1.8, 7.6) comparing the highest vs. lowest tertiles of mRNA expression and adjusting for overall aneuploidy burden and Gleason score, both strong prognostic factors in primary prostate cancer. Studying prostate cancer driven by the TMPRSS2-ERG oncogenic fusion, found in about half of all prostate tumors, we found that increased RAD21 alleviated toxic oncogenic stress and DNA damage caused by oncogene expression. Data from both organoids and patients indicate that increased RAD21 thereby enables aggressive tumors to sustain tumor proliferation, and more broadly suggests one path through which tumors benefit from aneuploidy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
121
Issue :
36
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
180098687
Full Text :
https://doi.org/10.1073/pnas.2405543121