Back to Search Start Over

Flexible Triboelectric Sensor based on Catalyst‐Diffusion Self‐Encapsulated Conductive Liquid‐Metal‐Silicone Ink for Somatosensory Soft Robotic System.

Authors :
Xian, Shuai
Xu, Yong
Li, Yixin
Wu, Zhenfeng
Xie, Xing
Wu, Zhigang
Yang, Xiya
Zhong, Yong
Source :
Advanced Functional Materials. Oct2024, p1. 16p. 8 Illustrations.
Publication Year :
2024

Abstract

The combination of fluidity and metallic conductivity has attracted considerable attention to liquid metal (LM), but its development remains challenging due to enormous surface tension. Here, vinyl‐terminated silicone oil and platinum catalyst are added to LM to reduce its surface tension, which develops a special type of liquid‐metal‐silicone (LMS) ink with a catalyst diffusion effect. Combined with an embedded three‐dimentional (3D) printing method, the LMS ink is printed on the support matrix, and the catalyst diffuses outward along the print path to cure the silicone around it, directly constructing self‐encapsulated conductive composites with excellent conductivity and self‐encapsulated flexible tactile sensors based on triboelectric nanogenerator (TENG). The sensor exhibits excellent sensitivity (0.308 V kPa−1), high linearity (≈0.99), and good durability (over 10 000 cycles). Furthermore, when used in flexible wearable electronics, the sensor demonstrates a good performance with an accuracy of ≈96% in classifying different human postures using a convolutional neural network. Finally, through embedded 3D printing with LMS ink and silicone ink, a somatosensory soft robotic gripper with complex cavity structures is designed and manufactured in one step, achieving the all‐in‐one integration of sensors and actuators. This study shows great application potential in flexible electronics and soft robotic systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
180129554
Full Text :
https://doi.org/10.1002/adfm.202412293