Back to Search
Start Over
Identifying sesterterpenoids via feature-based molecular networking and small-scale fermentation.
- Source :
-
Applied Microbiology & Biotechnology . 10/8/2024, Vol. 108 Issue 1, p1-11. 11p. - Publication Year :
- 2024
-
Abstract
- Terpenoids are known for their diverse structures and broad bioactivities with significant potential in pharmaceutical applications. However, natural products with low yields are usually ignored in traditional chemical analysis. Feature-based molecular networking (FBMN) was developed recently to cluster compounds with similar skeletons, which can highlight trace amounts of unknown compounds. Fusoxypene A is a sesterterpene synthesized by Fusarium oxysporum fusoxypene synthase (FoFS) with a unique 5/6/7/3/5 ring system. In this study, the FoFS-containing biosynthetic gene cluster was identified from F. oxysporum FO14005, and an efficient FBMN-based strategy was established to characterize four new sesterterpenoids, fusoxyordienoid A–D (1–4), based on a small-scale fermentation strategy. A cytochrome P450 monooxygenase, FusB, was found to be involved in the functionalization of fusoxypene A at C-17 and C-24 and responsible for the hydroxylation of fusoxyordienoid A at C-1 and C-8. This study highlights the potential of FBMN as a powerful tool for the discovery and characterization of natural compounds with low abundance. Key points: Combined small-scale fermentation and FBMN for rapid discovery of fusoxyordienoids Characterization of four new fusoxyordienoids with 5/6/7/3/5 ring system Biosynthetic pathway elucidation via tandem expression and substrate feeding [ABSTRACT FROM AUTHOR]
- Subjects :
- *ANALYTICAL chemistry
*KOJI
*FUSARIUM oxysporum
*GENE clusters
*SYNTHASES
Subjects
Details
- Language :
- English
- ISSN :
- 01757598
- Volume :
- 108
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Applied Microbiology & Biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 180152757
- Full Text :
- https://doi.org/10.1007/s00253-024-13299-9