Back to Search
Start Over
Tracking Phytoplankton Biomass Amid Wildfire Smoke Interference Using Landsat 8 OLI.
- Source :
-
Remote Sensing . Oct2024, Vol. 16 Issue 19, p3605. 16p. - Publication Year :
- 2024
-
Abstract
- This study investigates the escalating impact of wildfire smoke on the remote sensing of phytoplankton biomass in freshwater systems. Wildfire smoke disrupts the accuracy of Chlorophyll-a (Chl-a) retrieval models, with Chl-a often used as a proxy for quantifying phytoplankton biomass. Given the increasing frequency and intensity of wildfires, there is a need for the development and refinement of remote sensing methodologies to effectively monitor phytoplankton dynamics under wildfire-impacted conditions. Here we developed a novel approach using Landsat's coastal/aerosol band (B1) to screen for and categorize levels of wildfire smoke interference. By excluding high-interference data (B1 reflectance > 0.07) from the calibration set, Chl-a retrieval model performance using different Landsat band formulas improved significantly, with R2 increasing from 0.55 to as high as 0.80. Our findings demonstrate that Rayleigh-corrected reflectance, combined with B1 screening, provides a robust method for monitoring phytoplankton biomass even under moderate smoke interference, outperforming full atmospheric correction methods. This approach enhances the reliability of remote sensing in the face of increasing wildfire events, offering a valuable tool for the effective management of aquatic environments. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 19
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 180271355
- Full Text :
- https://doi.org/10.3390/rs16193605