Back to Search
Start Over
A 40-Year Time Series of Land Surface Emissivity Derived from AVHRR Sensors: A Fennoscandian Perspective.
- Source :
-
Remote Sensing . Oct2024, Vol. 16 Issue 19, p3686. 18p. - Publication Year :
- 2024
-
Abstract
- Accurate land surface temperature (LST) retrieval depends on precise knowledge of the land surface emissivity (LSE). Neglecting or inaccurately estimating the emissivity introduces substantial errors and uncertainty in LST measurements. The emissivity, which varies across different surfaces and land uses, reflects material composition and surface roughness. Satellite data offer a robust means to determine LSE at large scales. This study utilises the Normalised Difference Vegetation Index Threshold Method (NDVITHM) to produce a novel emissivity dataset spanning the last 40 years, specifically tailored for the Fennoscandian region, including Norway, Sweden, and Finland. Leveraging the long and continuous data series from the Advanced Very High Resolution Radiometer (AVHRR) sensors aboard the NOAA and MetOp satellites, an emissivity dataset is generated for 1981–2022. This dataset incorporates snow-cover information, enabling the creation of annual emissivity time series that account for winter conditions. LSE time series were extracted for six 15 × 15 km study sites and compared against the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD11A2 LSE product. The intercomparison reveals that, while both datasets generally align, significant seasonal differences exist. These disparities are attributable to differences in spectral response functions and temporal resolutions, as well as the method considering fixed values employed to calculate the emissivity. This study presents, for the first time, a 40-year time series of the emissivity for AVHRR channels 4 and 5 in Fennoscandia, highlighting the seasonal variability, land-cover influences, and wavelength-dependent emissivity differences. This dataset provides a valuable resource for future research on long-term land surface temperature and emissivity (LST&E) trends, as well as land-cover changes in the region, particularly with the use of Sentinel-3 data and upcoming missions such as EUMETSAT's MetOp Second Generation, scheduled for launch in 2025. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 19
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 180271436
- Full Text :
- https://doi.org/10.3390/rs16193686