Back to Search Start Over

Two-Stage Optimization Model Based on Neo4j-Dueling Deep Q Network.

Authors :
Chen, Tie
Yang, Pingping
Li, Hongxin
Gao, Jiaqi
Yuan, Yimin
Source :
Energies (19961073). Oct2024, Vol. 17 Issue 19, p4998. 18p.
Publication Year :
2024

Abstract

To alleviate the power flow congestion in active distribution networks (ADNs), this paper proposes a two-stage load transfer optimization model based on Neo4j-Dueling DQN. First, the Neo4j graph model was established as the training environment for Dueling DQN. Meanwhile, the power supply paths from the congestion point to the power source point were obtained using the Cypher language built into Neo4j, forming a load transfer space that served as the action space. Secondly, based on various constraints in the load transfer process, a reward and penalty function was formulated to establish the Dueling DQN training model. Finally, according to the ε − g r e e d y action selection strategy, actions were selected from the action space and interacted with the Neo4j environment, resulting in the optimal load transfer operation sequence. In this paper, Python was used as the programming language, TensorFlow open-source software library was used to form a deep reinforcement network, and Py2neo toolkit was used to complete the linkage between the python platform and Neo4j. We conducted experiments on a real 79-node system, using three power flow congestion scenarios for validation. Under the three power flow congestion scenarios, the time required to obtain the results was 2.87 s, 4.37 s and 3.45 s, respectively. For scenario 1 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by about 56.0%, 76.0% and 55.7%, respectively. For scenario 2 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by 41.7%, 72.9% and 56.7%, respectively. For scenario 3 before and after load transfer, the line loss, voltage deviation and line load rate were reduced by 13.6%, 47.1% and 37.7%, respectively. The experimental results show that the trained model can quickly and accurately derive the optimal load transfer operation sequence under different power flow congestion conditions, thereby validating the effectiveness of the proposed model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
19
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
180271741
Full Text :
https://doi.org/10.3390/en17194998