Back to Search Start Over

Dissipative Particle Dynamics Study on Interfacial Properties of Ternary H-Shaped Copolymer–Homopolymer Blends.

Authors :
Lin, Ye
Jin, Yongchao
Wang, Xiyin
Source :
Molecules. Oct2024, Vol. 29 Issue 19, p4775. 16p.
Publication Year :
2024

Abstract

Dissipative particle dynamics (DPD) simulations is used to study the effect of Am/2BmAm/2 and H-shaped (Am/4)2Bm(Am/4)2 block copolymers on the interfacial properties of ternary blends. Our simulations show the following: (i) The capacity of block copolymers to diminish interfacial tension is closely linked to their compositions. With identical molecular weights and concentrations, H-shaped block copolymers outperform triblock copolymers in mitigating interfacial tension. (ii) The interfacial tension within the blends correlates positively with the escalation in H-shaped block copolymer molecular weight. This correlation suggests that H-shaped block copolymers featuring a low molecular weight demonstrate superior efficacy as compatibilizers when contrasted with those possessing a high molecular weight. (iii) Enhancing the concentration of H-shaped block copolymers fosters their accumulation at the interface, leading to a reduction in correlations between immiscible homopolymers and a consequent decrease in interfacial tension. (iv) As the length of the homopolymer chains increases, there is a concurrent elevation in interfacial tension, suggesting that H-shaped block copolymers perform more effectively as compatibilizers in blends characterized by shorter homopolymer chain lengths. These findings elucidate the associations between the efficacy of H-shaped block copolymer compatibilizers and their specific molecular characteristics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
19
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
180274762
Full Text :
https://doi.org/10.3390/molecules29194775