Back to Search
Start Over
Design and Characterization of Poly(ethylene oxide)-Based Multifunctional Composites with Succinonitrile Fillers for Ambient-Temperature Structural Sodium-Ion Batteries.
- Source :
-
Polymers (20734360) . Oct2024, Vol. 16 Issue 19, p2806. 15p. - Publication Year :
- 2024
-
Abstract
- A new approach to developing structural sodium batteries capable of operating in ambient-temperature conditions has been successfully achieved. The developed multifunctional structural electrolyte (SE) using poly(ethylene oxide) (PEO) as a matrix integrated with succinonitrile (SN) plasticizers and glass-fiber (GF) reinforcements identified as GF_PEO-SN-NaClO4 showed a tensile strength of 32.1 MPa and an ionic conductivity of 1.01 × 10−4 S cm−1 at room temperature. It displayed a wide electrochemical stability window of 0 to 4.9 V and a high sodium-ion transference number of 0.51 at room temperature. The structural electrode (CF|SE) was fabricated by pressing the structural electrolyte with carbon fibers (CFs), and it showed a tensile strength of 72.3 MPa. The fabricated structural battery half-cell (CF||SE||Na) demonstrated good cycling stability and an energy density of 14.2 Wh kg−1, and it retained 80% capacity at the end of the 200th cycle. The cycled electrodes were observed using scanning electron microscopy, which revealed small dendrite formation and dense albeit uniform deposition of the sodium metal, helping to avoid a short-circuit of the cell and providing more cycling stability. The developed multifunctional matrix composites demonstrate promising potential for developing ambient-temperature sodium structural batteries. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734360
- Volume :
- 16
- Issue :
- 19
- Database :
- Academic Search Index
- Journal :
- Polymers (20734360)
- Publication Type :
- Academic Journal
- Accession number :
- 180276910
- Full Text :
- https://doi.org/10.3390/polym16192806