Back to Search
Start Over
Augmented barrier properties of poly (lactic acid) composite packaging film reinforced by antibacterial hybrid bio‐filler: Extending the shelf life of fruits.
- Source :
-
Polymer Composites . Oct2024, p1. 15p. 10 Illustrations. - Publication Year :
- 2024
-
Abstract
- Highlights This work investigates the construction of biodegradable packaging film based on polylactic acid (PLA) reinforced with a novel antibacterial hybrid nanofiller to improve barrier and mechanical properties. The study focuses on incorporating silver‐ingrained silica particles (Ag–In–Si) into PLA matrix to prepare the packaging film (Ag–In–SiPLA) that has superior antibacterial, and barrier property with negligible oxygen and water vapour penetration. The Ag was synthesized using natural neem leaf extract as a reducing agent. To ingrain silver over rice husk silica (Si) an in situ technique was adopted. Hence called Ag‐In‐Si bio‐filler. The Ag–In–SiPLA films were fabricated using melt blending and sheet extrusion methods by means of a micro‐compounder. The addition of rice husk silica served the purpose of cost‐effectiveness of the packaging film along with the enhancement of the oxygen and water barrier properties of the films. The optimized sample (PLA loaded with 3% Ag–In–Si), exhibited optimum transparency, moisture resistance, and barrier properties compared with control PLA film. The experiments on Muntingia calabura (Jamaica cherry) preservation have verified the remarkable effectiveness of Ag–In–SiPLA films in preserving their quality for an extended period. These biodegradable packaging films, composed of food‐grade materials and sustainable ingredients, have the potential to provide a compostable and environmentally friendly solution for various packaging applications. This research shed light on the antibacterial Ag–In–SiPLA film as a long‐term, high‐performance fruit packaging solution. Novel antibacterial PLA composite with enhanced barrier and mechanical properties. Silver‐ingrained silica particles improve antibacterial and barrier properties. Green synthesis of silver using neem leaf extract Melt blending and sheet extrusion used to create cost‐effective packaging films. Ag–In–SiPLA films extend Muntingia calabura preservation, proving effective. [ABSTRACT FROM AUTHOR]
- Subjects :
- *PACKAGING film
*FRUIT packaging
*POLYLACTIC acid
*OXYGEN in water
*WATER vapor
Subjects
Details
- Language :
- English
- ISSN :
- 02728397
- Database :
- Academic Search Index
- Journal :
- Polymer Composites
- Publication Type :
- Academic Journal
- Accession number :
- 180293023
- Full Text :
- https://doi.org/10.1002/pc.29071