Back to Search Start Over

Effect of Ta–TiO2 Nanoparticles in Anion Exchange Membranes: Improved Hydroxide Ion Conductivity and Mechanical Strength for Alkaline Water Electrolysis Cells.

Authors :
Mahmoud, Ahmed Mohamed Ahmed
Miyatake, Kenji
Tsujii, Kaito
Kakinuma, Katsuyoshi
Liu, Fanghua
Yadav, Vikrant
Xian, Fang
Guo, Lin
Wong, Chun Yik
Iwataki, Toshio
Uchida, Makoto
Source :
Macromolecular Chemistry & Physics. Oct2024, p1. 9p. 11 Illustrations.
Publication Year :
2024

Abstract

To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microscopy reveals that the die coating method produces a more homogenous and uniform distribution of Ta–TiO2 particles in the composite membranes than the solution‐casting method. The Ta‐TiO2 particles promotes the suppression of water absorbability and dimensional swelling of the composite membranes which is more pronounced in the die coated membranes. The Ta–TiO2 increase hydroxide ion conductivity to 116.9 mS cm−1 at 80 °C for the die‐coated membrane, surpassing that of the pristine QPAF‐4 membrane (92 mS cm−1). Ta–TiO2 with the composite membranes survive in 4 m KOH at 80 °C for 1000 h, maintaining 96–112 mS cm−1 (88–99% remaining) of initial conductivity. All composite membranes exhibit higher mechanical robustness (elongation of >200%), with the die‐coated composite membranes. The optimized die coated composite membrane is fabricated in an alkaline water electrolysis cell achieving 1.63 V at 1.0 A cm−2 (75.5% efficiency). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10221352
Database :
Academic Search Index
Journal :
Macromolecular Chemistry & Physics
Publication Type :
Academic Journal
Accession number :
180316474
Full Text :
https://doi.org/10.1002/macp.202400226