Back to Search
Start Over
A Brain Network Analysis Model for Motion Sickness in Electric Vehicles Based on EEG and fNIRS Signal Fusion.
- Source :
-
Sensors (14248220) . Oct2024, Vol. 24 Issue 20, p6613. 18p. - Publication Year :
- 2024
-
Abstract
- Motion sickness is a common issue in electric vehicles, significantly impacting passenger comfort. This study aims to develop a functional brain network analysis model by integrating electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals to evaluate motion sickness symptoms. During real-world testing with the Feifan F7 series of new energy-electric vehicles from SAIC Motor Corp, data were collected from 32 participants. The EEG signals were divided into four frequency bands: delta-range, theta-range, alpha-range, and beta-range, and brain oxygenation variation was calculated from the fNIRS signals. Functional connectivity between brain regions was measured to construct functional brain network models for motion sickness analysis. A motion sickness detection model was developed using a graph convolutional network (GCN) to integrate EEG and fNIRS data. Our results show significant differences in brain functional connectivity between participants in motion and non-motion sickness states. The model that combined fNIRS data with high-frequency EEG signals achieved the best performance, improving the F1 score by 11.4% compared to using EEG data alone and by 8.2% compared to using fNIRS data alone. These results highlight the effectiveness of integrating EEG and fNIRS signals using GCN for motion sickness detection. They demonstrate the model's superiority over single-modality approaches, showcasing its potential for real-world applications in electric vehicles. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 24
- Issue :
- 20
- Database :
- Academic Search Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 180486208
- Full Text :
- https://doi.org/10.3390/s24206613