Back to Search
Start Over
Non-electrophilic NRF2 activators promote wound healing in human keratinocytes and diabetic mice and demonstrate selective downstream gene targeting.
- Source :
-
Scientific Reports . 10/24/2024, Vol. 14 Issue 1, p1-24. 24p. - Publication Year :
- 2024
-
Abstract
- The transcription factor NRF2 plays an important role in many biological processes and is a promising therapeutic target for many disease states. NRF2 is highly expressed in the skin and is known to play a critical role in diabetic wound healing, a serious disease process for which treatment options are limited. However, many existing NRF2 activators display off-target effects due to their electrophilic mechanism, underscoring the need for alternative approaches. In this work, we investigated two recently described non-electrophilic NRF2 activators, ADJ-310 and PRL-295, and demonstrated their efficacy in vitro and in vivo in human keratinocytes and Leprdb/db diabetic mice. We also compared the downstream targets of PRL-295 to those of the widely used electrophilic NRF2 activator CDDO-Me by RNA sequencing. Both ADJ-310 and PRL-295 maintained human keratinocyte cell viability at increasing concentrations and maintained or improved cell proliferation over time. Both compounds also increased cell migration, improving in vitro wound closure. ADJ-310 and PRL-295 enhanced the oxidative stress response in vitro, and RNA-sequencing data showed that PRL-295 activated NRF2 with a narrower transcriptomic effect than CDDO-Me. In vivo, both ADJ-310 and PRL-295 improved wound healing in Leprdb/db diabetic mice and upregulated known downstream NRF2 target genes in treated tissue. These results highlight the non-electrophilic compounds ADJ-310 and PRL-295 as effective, innovative tools for investigating the function of NRF2. These compounds directly address the need for alternative NRF2 activators and offer a new approach to studying the role of NRF2 in human disease and its potential as a therapeutic across multiple disease states. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- 180500317
- Full Text :
- https://doi.org/10.1038/s41598-024-75786-3