Back to Search Start Over

Stable and Efficient Perovskite Solar Cells by Controlling the Crystal Growth via Introduction of Plasmonic TiN Nanoparticles.

Authors :
Omelianovych, Oleksii
Sandhu, Sanjay
Ewusi, Mensah Appiagyei
Larina, Liudmila
Kim, Byeonggwan
Trinh, Ba Thong
Szaniel, Adam
Yoon, Ilsun
Lee, Jae‐Joon
Choi, Ho‐Suk
Source :
Advanced Functional Materials. 10/29/2024, Vol. 34 Issue 44, p1-11. 11p.
Publication Year :
2024

Abstract

Incorporating noble‐metal plasmonic nanoparticles (NPs) enhances the optoelectronic properties of perovskite solar cells (PSCs) but at a higher cost. In this work, the overlooked potential of refractory plasmonic materials is highlighted as a cost‐effective alternative additive in PSC research. This investigation aims to stimulate interest in this area by showcasing the theoretical and practical impacts of TiN plasmonic NPs when integrated into PSCs. TiN plasmonic NPs present a cost‐effective yet underexplored option. This study explores the impact of TiN NPs on PSCs through theoretical and experimental approaches. Finite‐difference time‐domain (FDTD) optical simulations and empirical data indicate that TiN NPs increase absorption and reduce reflectance in PSCs, driven by surface plasmon resonance and the significant growth of perovskite grains from 450 to 1400 nm. These NPs also regulate the perovskite crystallization rate by adsorbing DMF/DMSO, fostering larger grain formation. Improved band alignment and decreased trap states enhance charge transport and diminish non‐radiative recombination losses. As a result, PSC efficiency with optimal TiN NP concentration increased from 19.07% to 21.37%. Additionally, TiN‐enhanced PSCs display better stability, retaining 98.1% of their original PCE after 31 days under ambient conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
44
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
180504165
Full Text :
https://doi.org/10.1002/adfm.202407343