Back to Search Start Over

Data Quality-Aware Client Selection in Heterogeneous Federated Learning.

Authors :
Song, Shinan
Li, Yaxin
Wan, Jin
Fu, Xianghua
Jiang, Jingyan
Source :
Mathematics (2227-7390). Oct2024, Vol. 12 Issue 20, p3229. 17p.
Publication Year :
2024

Abstract

Federated Learning (FL) enables decentralized data utilization while maintaining edge user privacy, but it faces challenges due to statistical heterogeneity. Existing approaches address client drift and data heterogeneity issues. However, real-world settings often involve low-quality data with noisy features, such as covariate drift or adversarial samples, which are usually ignored. Noisy samples significantly impact the global model's accuracy and convergence rate. Assessing data quality and selectively aggregating updates from high-quality clients is crucial, but dynamically perceiving data quality without additional computations or data exchanges is challenging. In this paper, we introduce the FedDQA (Federated learning via Data Quality-Aware) (FedDQA) framework. We discover increased data noise leads to slower loss reduction during local model training. We propose a loss sharpness-based Data-Quality-Awareness (DQA) metric to differentiate between high-quality and low-quality data. Based on the DQA, we design a client selection algorithm that strategically selects participant clients to reduce the negative impact of noisy clients. Experiment results indicate that FedDQA significantly outperforms the baselines. Notably, it achieves up to a 4% increase in global model accuracy and demonstrates faster convergence rates. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
12
Issue :
20
Database :
Academic Search Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
180526375
Full Text :
https://doi.org/10.3390/math12203229