Back to Search
Start Over
Assessment of ChatGPT's Compliance with ESC-Acute Coronary Syndrome Management Guidelines at 30-Day Intervals.
- Source :
-
Life (2075-1729) . Oct2024, Vol. 14 Issue 10, p1235. 8p. - Publication Year :
- 2024
-
Abstract
- Background: Despite ongoing advancements in healthcare, acute coronary syndromes (ACS) remain a leading cause of morbidity and mortality. The 2023 European Society of Cardiology (ESC) guidelines have introduced significant improvements in ACS management. Concurrently, artificial intelligence (AI), particularly models like ChatGPT, is showing promise in supporting clinical decision-making and education. Methods: This study evaluates the performance of ChatGPT-v4 in adhering to ESC guidelines for ACS management over a 30-day interval. Based on ESC guidelines, a dataset of 100 questions was used to assess ChatGPT's accuracy and consistency. The questions were divided into binary (true/false) and multiple-choice formats. The AI's responses were initially evaluated and then re-evaluated after 30 days, using accuracy and consistency as primary metrics. Results: ChatGPT's accuracy in answering ACS-related binary and multiple-choice questions was evaluated at baseline and after 30 days. For binary questions, accuracy was 84% initially and 86% after 30 days, with no significant change (p = 0.564). Cohen's Kappa was 0.94, indicating excellent agreement. Multiple-choice question accuracy was 80% initially, improving to 84% after 30 days, also without significant change (p = 0.527). Cohen's Kappa was 0.93, reflecting similarly high consistency. These results suggest stable AI performance with minor fluctuations. Conclusions: Despite variations in performance on binary and multiple-choice questions, ChatGPT shows significant promise as a clinical support tool in ACS management. However, it is crucial to consider limitations such as fluctuations and hallucinations, which could lead to severe issues in clinical applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20751729
- Volume :
- 14
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- Life (2075-1729)
- Publication Type :
- Academic Journal
- Accession number :
- 180528815
- Full Text :
- https://doi.org/10.3390/life14101235