Back to Search
Start Over
On the eigenvalues of the distance signless Laplacian matrix of graphs.
- Source :
-
Proyecciones - Journal of Mathematics . Oct2024, Vol. 43 Issue 5, p1253-1267. 15p. - Publication Year :
- 2024
-
Abstract
- Let G be a connected graph and let DQ(G) be the distance signless Laplacian matrix of G with eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρn. The spread of the matrix DQ(G) is defined as s(DQ(G)) := maxi,j |ρi - ρj | = ρ1 - ρn. We derive new bounds for the distance signless Laplacian spectral radius ρ1 of G. We establish a relationship between the distance signless Laplacian energy and the spread of DQ(G). For a real number α ≠ 0, the graph invariant mα(G) is the sum of the α-th power of the distance signless Laplacian eigenvalues of G. Finally, we obtain various bounds for the graph invariant mα(G). [ABSTRACT FROM AUTHOR]
- Subjects :
- *GRAPH connectivity
*REAL numbers
*EIGENVALUES
*LAPLACIAN matrices
Subjects
Details
- Language :
- English
- ISSN :
- 07160917
- Volume :
- 43
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- Proyecciones - Journal of Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 180580875
- Full Text :
- https://doi.org/10.22199/issn.0717-6279-6247