Back to Search Start Over

On the eigenvalues of the distance signless Laplacian matrix of graphs.

Authors :
Jahanbani, Akbar
Shooshtari, Hajar
Ul Haq, Mohd Abrar
Pirzada, S.
Source :
Proyecciones - Journal of Mathematics. Oct2024, Vol. 43 Issue 5, p1253-1267. 15p.
Publication Year :
2024

Abstract

Let G be a connected graph and let DQ(G) be the distance signless Laplacian matrix of G with eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρn. The spread of the matrix DQ(G) is defined as s(DQ(G)) := maxi,j |ρi - ρj | = ρ1 - ρn. We derive new bounds for the distance signless Laplacian spectral radius ρ1 of G. We establish a relationship between the distance signless Laplacian energy and the spread of DQ(G). For a real number α ≠ 0, the graph invariant mα(G) is the sum of the α-th power of the distance signless Laplacian eigenvalues of G. Finally, we obtain various bounds for the graph invariant mα(G). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07160917
Volume :
43
Issue :
5
Database :
Academic Search Index
Journal :
Proyecciones - Journal of Mathematics
Publication Type :
Academic Journal
Accession number :
180580875
Full Text :
https://doi.org/10.22199/issn.0717-6279-6247