Back to Search Start Over

Tandem dye-sensitized solar cells achieve 12.89% efficiency using novel organic sensitizers.

Authors :
Badawy, Safa A.
Abdel-Latif, Ehab
Elmorsy, Mohamed R.
Source :
Scientific Reports. 10/30/2024, Vol. 14 Issue 1, p1-15. 15p.
Publication Year :
2024

Abstract

This study presents a significant advancement in tandem dye-sensitized solar cells (T-DSSCs) through the strategic synthesis of novel triazatruxene (TAT) sensitizers MS-1 and MS-2. These organic sensitizers demonstrate exceptional light-harvesting capacity and overall performance, pushing the boundaries of power conversion efficiency (PCE) in DSSCs. The MS-1-based DSSCs achieved an impressive PCE of 12.81%, while MS-2 sensitizers reached a notable 10.92%. These efficiencies represent significant improvements over the conventional N719 dye (7.60%), demonstrating the potential of metal-free organic sensitizers in DSSC technology. The key to these noteworthy results lies in the molecular design of the organic sensitizers. The triazatruxene donor segment in the MS-1 and MS-2 dyes, featuring a rigid structure and efficient intramolecular charge transfer (ICT), proved to be a game-changer for photovoltaic properties. Building on these results, we explored an innovative parallel tandem cell (PT-DSSC) configuration. By connecting separate cells containing N719 and MS-1 sensitizers, we achieved a record efficiency of 12.89% with enhanced short-circuit current density (JSC) and open-circuit voltage (VOC)compared to single-dye cells. This study highlights the potential of molecular engineering in organic sensitizers and device optimization to enhance DSSC performance, paving the way for further advancements in solar cell technology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
180637064
Full Text :
https://doi.org/10.1038/s41598-024-75959-0