Back to Search Start Over

Modeling Fibrin Accumulation on Flow‐Diverting Devices for Intracranial Aneurysms.

Authors :
Cebral, Juan R.
Mut, Fernando
Löhner, Rainald
Marsh, Laurel
Chitsaz, Alireza
Bilgin, Cem
Bayraktar, Esref
Kallmes, David
Kadirvel, Ramanathan
Source :
International Journal for Numerical Methods in Biomedical Engineering. Nov2024, p1. 12p. 7 Illustrations.
Publication Year :
2024

Abstract

ABSTRACT The mechanisms leading to aneurysm occlusion after treatment with flow‐diverting devices are not fully understood. Flow modification induces thrombus formation within the aneurysm cavity, but fibrin can simultaneously accumulate and cover the device scaffold, leading to further flow modification. However, the interplay and relative importance of these processes are not clearly understood. A computational model of fibrin accumulation and flow modification after flow diversion treatment of cerebral aneurysms has been developed under the guidance of in vitro experiments and observations. The model is based on the loose coupling of flow and transport‐reaction equations that are solved separately by independent codes. Interaction or reactive terms account for thrombin production from prothrombin stimulated by thrombogenic metallic wires and inhibition by antithrombin as well as fibrin production from fibrinogen stimulated by thrombin and flow shear stress, and fibrin adhesion to device wires and already attached fibrin. The computational model was demonstrated and tested on idealized vessel and aneurysm geometries. The model was able to reproduce the salient features of fibrin accumulation after the deployment of flow‐diverting devices in idealized in vitro models of cerebral aneurysms. Namely, fibrin production in regions of high shear stress, initial accumulation at the inflow zone, and progressive occlusion of the device and corresponding flow attenuation. The computational model linking flow dynamics to fibrin production, transport, and adhesion can be used to investigate and better understand the effects that lead to fibrin accumulation and the resulting aneurysm inflow reduction and intra‐aneurysmal flow modulation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20407939
Database :
Academic Search Index
Journal :
International Journal for Numerical Methods in Biomedical Engineering
Publication Type :
Academic Journal
Accession number :
180670882
Full Text :
https://doi.org/10.1002/cnm.3883