Back to Search Start Over

Long‐Range Charge Carrier Transport in Planar Polymer Bulk‐Heterojunction Photovoltaic Cells.

Authors :
AlTal, Faleh
Gao, Jun
Source :
Physica Status Solidi - Rapid Research Letters. Nov2024, Vol. 18 Issue 11, p1-7. 7p.
Publication Year :
2024

Abstract

One‐dimensional scanning optical beam‐induced current (OBIC) measurements have been carried out on polymer bulk heterojunction (BHJ) photovoltaic cells with a planar, or lateral configuration. The planar P3HT:PCBM cells have parallel aluminum or gold electrodes that are 390 to 560 micrometers apart. When a focused laser beam is scanned across the electrode gap, photocurrent or photovoltage is recorded as a function of beam position along with the transmission of the excitation beam. Despite the large electrode gap size, cells with symmetric Al/Al electrodes exhibit significant photocurrent and photovoltage which are the highest at the electrode interfaces and null at the cell center. The OBIC in these large planar polymer BHJ cells is attributed to the metal/BHJ blend Schottky junction. The larger Schottky barrier of the Al/BHJ junction gives rise to a stronger OBIC response than the Au/BHJ junction. The photocurrent and photovoltage always have opposite signs and are antisymmetric about the cell center. In asymmetric Al/Au cells, the electrode work function difference contributes an additional built‐in field/potential drop and significantly modifies the photocurrent and photovoltage profiles. The depletion width of the Al/BHJ Schottky junction is 110–120 μm, while the minority electron diffusion length is determined to be 43.8 μm. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18626254
Volume :
18
Issue :
11
Database :
Academic Search Index
Journal :
Physica Status Solidi - Rapid Research Letters
Publication Type :
Academic Journal
Accession number :
180775600
Full Text :
https://doi.org/10.1002/pssr.202400139