Back to Search Start Over

Thermal Stability and Purity of Graphene and Carbon Nanotubes: Key Parameters for Their Thermogravimetric Analysis (TGA).

Authors :
Martincic, Markus
Sandoval, Stefania
Oró-Solé, Judith
Tobías-Rossell, Gerard
Source :
Nanomaterials (2079-4991). Nov2024, Vol. 14 Issue 21, p1754. 19p.
Publication Year :
2024

Abstract

Thermal analysis is widely employed for the characterization of nanomaterials. It encompasses a variety of techniques that allow the evaluation of the physicochemical properties of a material by monitoring its response under controlled temperature. In the case of carbon nanomaterials, such as carbon nanotubes and graphene derivatives, thermogravimetric analysis (TGA) is particularly useful to determine the quality and stability of the sample, the presence of impurities and the degree of functionalization or doping after post-synthesis treatments. Furthermore, TGA is widely used to evaluate the thermal stability against oxidation by air, which can be, for instance, enhanced by the purification of the material and by nitrogen doping, finding application in areas where a retarded combustion of the material is required. Herein, we have evaluated key parameters that play a role in the data obtained from TGA, namely, gas flow rate, sample weight and temperature rate, used during the analysis. We found out that the heating rate played the major role in the process of combustion in the presence of air, inducing an increase in the temperature at which the oxidation of CNTs starts to occur, up to ca. 100 °C (from 1 °C min−1 to 50 °C min−1). The same trend was observed for all the evaluated systems, namely N-doped CNTs, graphene produced by mechanical exfoliation and N-doped reduced graphene samples. Other aspects, like the presence of impurities or structural defects in the evaluated samples, were analyzed by TGA, highlighting the versatility and usefulness of the technique to provide information of structural aspects and properties of carbon materials. Finally, a set of TGA parameters are recommended for the analysis of carbon nanomaterials to obtain reliable data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
14
Issue :
21
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
180780534
Full Text :
https://doi.org/10.3390/nano14211754