Back to Search Start Over

Biobased Compostable Plastics End-of-Life: Environmental Assessment Including Carbon Footprint and Microplastic Impacts.

Authors :
Keyes, Anthony
Saffron, Christopher M.
Manjure, Shilpa
Narayan, Ramani
Source :
Polymers (20734360). Nov2024, Vol. 16 Issue 21, p3073. 16p.
Publication Year :
2024

Abstract

In this paper, we examine how traditional life-cycle assessment (LCA) for bio-based and compostable plastics overlooks issues surrounding carbon sequestration and microplastic persistence. To outline biased comparisons drawn from these omitted environmental impacts, we provide, as an example, a comparative LCA for compostable biobased vs. non-compostable fossil-based materials. In doing so we (1) demonstrate the proper way to capture carbon footprints to make fair comparisons and (2) identify the overlooked issues of microplastics and the need for non-persistent alternatives. By ensuring accurate biogenic carbon capture, key contributors to CO2 evolution are properly identified, allowing well-informed changes to formulations that can reduce the environmental impact of greenhouse gas emissions. In a complimentary manner, we summarize the growing research surrounding microplastic persistence and toxicity. We highlight the fundamental ability and the growing number of studies that show that industrial composting can completely mineralize certified compostable materials. This mineralization exists as a viable solution to combat microplastic persistence, currently an absent impact category in LCA. In summary, we propose a new paradigm in which the value proposition of biobased materials can be accurately captured while highlighting compostables as a solution for the increasing microplastic accumulation in the environment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
21
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
180783995
Full Text :
https://doi.org/10.3390/polym16213073