Back to Search Start Over

Targeting mitochondrial metabolism by the mitotoxin bromoxib in leukemia and lymphoma cells.

Authors :
Schmitt, Laura
Krings, Karina S.
Wolsing, Andre
Buque, Xabier
Zimmermann, Marcel
Flores-Romero, Hector
Lenz, Thomas
Lechtenberg, Ilka
Peter, Christoph
Stork, Björn
Teusch, Nicole
Proksch, Peter
Stühler, Kai
García-Sáez, Ana J.
Reichert, Andreas S.
Aspichueta, Patricia
Bhatia, Sanil
Wesselborg, Sebastian
Source :
Cell Communication & Signaling. 11/12/2024, Vol. 22 Issue 1, p1-22. 22p.
Publication Year :
2024

Abstract

Targeting mitochondrial metabolism represents a promising approach for cancer treatment. Here, we investigated the mitotoxic potential of the polybrominated diphenyl ether bromoxib, a natural compound isolated from the marine sponge Dysidea family. We could show that bromoxib comprised strong cytotoxicity in different leukemia and lymphoma cell lines (such as HL60, HPBALL, Jurkat, K562, KOPTK1, MOLT4, SUPB15 and Ramos), but also in solid tumor cell lines (such as glioblastoma cell lines SJ-GBM2 and TP365MG). Bromoxib activated the mitochondrial death pathway as evidenced by the rapid translocation of Bax to the mitochondria and the subsequent mitochondrial release of Smac. Accordingly, bromoxib-induced apoptosis was blocked in caspase 9 deficient Jurkat cells and Jurkat cells overexpressing the antiapoptotic protein Bcl-2. In addition, we could show that bromoxib functioned as an uncoupler of the electron transport chain with similar rapid kinetics as CCCP in terms of dissipation of the mitochondrial membrane potential (ΔΨm), processing of the dynamin-like GTPase OPA1 and subsequent fragmentation of mitochondria. Beyond that, bromoxib strongly abrogated ATP production via glycolysis as well as oxidative phosphorylation (OXPHOS) by targeting electron transport chain complexes II, III, and V (ATP-synthase) in Ramos lymphoma cells. Thus, bromoxib's potential to act on both cytosolic glycolysis and mitochondrial respiration renders it a promising agent for the treatment of leukemia and lymphoma. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1478811X
Volume :
22
Issue :
1
Database :
Academic Search Index
Journal :
Cell Communication & Signaling
Publication Type :
Academic Journal
Accession number :
180849301
Full Text :
https://doi.org/10.1186/s12964-024-01913-2