Back to Search
Start Over
Gradient estimates for Δpu+Δqu+a|u|s−1u+b|u|l−1u=0 on a complete Riemannian manifold and applications.
- Source :
-
International Journal of Mathematics . Feb2025, Vol. 36 Issue 2, p1-53. 53p. - Publication Year :
- 2025
-
Abstract
- In this paper, we use the Nash–Moser iteration method to study the local and global behaviors of non-negative solutions to the nonlinear elliptic equation Δ p u + Δ q u + a | u | s − 1 u + b | u | l − 1 u = 0 defined on a complete Riemannian manifold (M , g) , where q > p > 1 , a , b , s , l are constants and Δ z u = div (| ∇ u | z − 2 ∇ u) , with z ∈ { p , q } , is the usual z -Laplace operator. Under some assumptions on p , q , a , b , s and l , we derive gradient estimates and Liouville-type theorems for non-negative solutions to the above equation. In particular, we show that, if u is a non-negative entire solution to Δ p u + Δ q u = 0 (1 < p < q) on a complete non-compact Riemannian manifold M with non-negative Ricci curvature and dim M = n ≥ 3 , and f = | ∇ u | 2 ∈ L β (M) where β > max n (q − p) 2 , 1 + p 2 n n − 2 , 2 n n − 2 , then u is a trivial constant solution. [ABSTRACT FROM AUTHOR]
- Subjects :
- *RIEMANNIAN manifolds
*NONLINEAR equations
*CURVATURE
*EQUATIONS
Subjects
Details
- Language :
- English
- ISSN :
- 0129167X
- Volume :
- 36
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- International Journal of Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 181523335
- Full Text :
- https://doi.org/10.1142/S0129167X24500708