Back to Search Start Over

Tetraalkynylporphyrin-mediated covalent assembly of gold nanoclusters for targeted tumor fluorescence imaging and enhanced photodynamic therapy.

Authors :
Yin, Sheng-Yan
Hu, Yingcai
Qu, Fengli
Li, Jin
Li, Jishan
Source :
Microchimica Acta. Nov2024, Vol. 191 Issue 11, p1-12. 12p.
Publication Year :
2024

Abstract

A covalent assembly strategy was developed to construct a gold nanocluster-based nano-assembly (AuNCNA) in a controllable manner, using Au8 nanocluster as node and 5,10,15,20-tetra(4-alkynylphenyl)porphine (TEPP) as ligand. Subsequently, the tripeptide arginine glycine aspartic acid (RGD) peptide is further modified via clicking reaction to build a multi-functional nanoplatform (AuNCNA@RGD) that can integrate the targeted fluorescence imaging and efficient photodynamic therapy (PDT). The strong interregulation of Au8 nanocluster and TEPP results in AuNCNA@RGD exhibiting three distinct advantages: (i) TEPP plays an important role in stabilizing the Au8 nanocluster and keeping the active site fixed within the framework, thereby enhancing stability of Au8 nanocluster; (ii) Au8 nanocluster possess adjustable energy level, which can accelerate the transfer of photogenerated charge and prevent the recombination of electrons and holes, thus improving the photosensitivity of TEPP for PDT; (iii) AuNCNA exhibits bright fluorescence emission that facilitates RGD-assisted targeted tumor imaging. This work expands the construction method of AuNC assembly, and this assembly method is versatile and can flexibly transform different organic ligands to construct various AuNC-based functional nanomaterials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00263672
Volume :
191
Issue :
11
Database :
Academic Search Index
Journal :
Microchimica Acta
Publication Type :
Academic Journal
Accession number :
180932141
Full Text :
https://doi.org/10.1007/s00604-024-06741-2