Back to Search
Start Over
Micromechanics of fine-grain infiltration in coarse grain sands.
- Source :
-
Acta Geotechnica . Nov2024, p1-16. - Publication Year :
- 2024
-
Abstract
- The loss of fine particles can induce mechanical instabilities in granular soils subjected to internal fluid flow. An appealing countermeasure consists of the re-injection of fine grains with the objective of achieving retention in the soil matrix. In this study, both gravity- and fluid-driven infiltration of fine particles into coarse-grain columns with different solid fraction ϕ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi$$\end{document} and size ratios <italic>R</italic> have been studied using coupled pore-scale finite volume (PFV) and discrete element method (DEM) schemes. Three clogging regimes, surface clogging, deep infiltration, and percolation are detected, and the characteristic infiltration depths L0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_{0}$$\end{document} are found to grow exponentially with <italic>R</italic> under gravity- and fluid-driven cases. A probabilistic model derived from pore-constriction size statistics is then put forward, which could efficiently interpret the decaying distribution of fine retention for a given size ratio <italic>R</italic> and packing density. The mean transit velocity of fine grains follows an increasing trend with <italic>R</italic> under fixed ϕ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi$$\end{document} and can be collapsed over an almost constant value with the appropriate scaling of ϕ/R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi /\sqrt{R}$$\end{document}. Compared to gravitational percolation, more lateral dispersion is found in fluid-driven conditions, and an estimation of the related lateral dispersion coefficient <italic>D</italic> is provided based on ϕ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi$$\end{document} and <italic>R</italic>. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 18611125
- Database :
- Academic Search Index
- Journal :
- Acta Geotechnica
- Publication Type :
- Academic Journal
- Accession number :
- 180984292
- Full Text :
- https://doi.org/10.1007/s11440-024-02464-z