Back to Search
Start Over
Every latin hypercube of order 5 has transversals.
- Source :
-
Journal of Combinatorial Designs . Nov2024, Vol. 32 Issue 11, p679-699. 21p. - Publication Year :
- 2024
-
Abstract
- We prove that for all n>1 $n\gt 1$ every latin n $n$‐dimensional cube of order 5 has transversals. We find all 123 paratopy classes of layer‐latin cubes of order 5 with no transversals. For each n≥3 $n\ge 3$ and q≥3 $q\ge 3$ we construct a (2q−2)×q×⋯×q $(2q-2)\times q\times {\rm{\cdots }}\times q$ latin n $n$‐dimensional cuboid of order q $q$ with no transversals. Moreover, we find all paratopy classes of nonextendible and noncompletable latin cuboids of order 5. [ABSTRACT FROM AUTHOR]
- Subjects :
- *PERMANENTS (Matrices)
*MAGIC squares
*TRANSVERSAL lines
Subjects
Details
- Language :
- English
- ISSN :
- 10638539
- Volume :
- 32
- Issue :
- 11
- Database :
- Academic Search Index
- Journal :
- Journal of Combinatorial Designs
- Publication Type :
- Academic Journal
- Accession number :
- 181039601
- Full Text :
- https://doi.org/10.1002/jcd.21954