Back to Search Start Over

On energy conservation of weak solutions to the α$\alpha$‐type Euler models.

Authors :
Ye, Yulin
Wei, Wei
Wang, Yanqing
Source :
ZAMM -- Journal of Applied Mathematics & Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. Nov2024, p1. 22p.
Publication Year :
2024

Abstract

Very recently, Boutros and Titi considered Onsager's conjecture of α$\alpha$‐type Euler models in Besov spaces B3,∞β$B^{\beta }_{3,\infty }$ and B3,∞γ$B^{\gamma }_{3,\infty }$ with β>0,γ>1$\beta >0, \gamma >1$. In this paper, we study the energy conservation of weak solutions to these systems in Lebesgue space L3(T3)$L^{3}(\mathbb {T}^{3})$ and homogenous Sobolev space Ẇ1,3(T3)$\dot{W}^{1,3}(\mathbb {T}^{3})$. Moreover, the corresponding results for the energy and the cross‐helicity of the inviscid α$\alpha$‐magnetohydrodynamic equations are also obtained. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00442267
Database :
Academic Search Index
Journal :
ZAMM -- Journal of Applied Mathematics & Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Publication Type :
Academic Journal
Accession number :
181130750
Full Text :
https://doi.org/10.1002/zamm.202300406