Back to Search Start Over

Regression of Concurrence via Local Unitary Invariants.

Authors :
Li, Ming
Wang, Wenjun
Zhang, Xiaoyu
Wang, Jing
Li, Lei
Shen, Shuqian
Source :
Entropy. Nov2024, Vol. 26 Issue 11, p917. 13p.
Publication Year :
2024

Abstract

Concurrence is a crucial entanglement measure in quantum theory used to describe the degree of entanglement between two or more qubits. Local unitary (LU) invariants can be employed to describe the relevant properties of quantum states. Compared to quantum state tomography, observing LU invariants can save substantial physical resources and reduce errors associated with tomography. In this paper, we use LU invariants as explanatory variables and employ methods such as multiple regression, tree models, and BP neural network models to fit the concurrence of 2-qubit quantum states. For pure states and Werner states, by analyzing the correlation between data, a functional formula for concurrence in terms of LU invariants is obtained. Additionally, for any two-qubit quantum states, the prediction accuracy for concurrence reaches 98.5%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10994300
Volume :
26
Issue :
11
Database :
Academic Search Index
Journal :
Entropy
Publication Type :
Academic Journal
Accession number :
181164745
Full Text :
https://doi.org/10.3390/e26110917